Peer-reviewed publications and R&R
​​
-
Banulescu-Radu, D., Hansen, P.R., Huang, Z., Matei, M. (2023). Volatility During the Financial Crisis Through the Lens of High Frequency Data: A Realized GARCH Approach. R&R Journal of Financial Econometrics
-
Banulescu-Radu,D., Kougblenou, Y., (2023). Data science for insurance fraud detection: a review. Forthcoming in Handbook of Insurance, Springer
-
Banulescu-Radu, D., Yankol-Schalck, M. (2023). Practical guideline to efficiently detect insurance fraud in the era of machine learning: a household insurance case. Journal of Risk and Insurance (published online Nov 27, 2023)
-
Banulescu-Radu, D., Giuliano, F. (2022). Nouvelles technologies d’Intelligence Artificielle pour la détection de la fraude et du blanchiment d’argent : avantages, limites et opportunités. Revue du Grasco, no. 36
-
Banulescu-Radu, D., Hurlin, C., Leymarie, J., Scaillet, O. (2021). Backtesting marginal expected shortfall and related systemic risk measures. Management Science, 67(9), 5301-5967
-
Banulescu-Radu, D., Dumitrescu, E. (2019). Do High-frequency-based Measures Improve Conditional Covariance Forecasts? in Financial Mathematics, Volatility and Covariance Modelling, Routledge Advances in Applied Financial Econometrics Series, Volume 2, 261–285
-
Banulescu, D., Colletaz, G., Hurlin, C., Tokpavi, S. (2016). Forecasting High-Frequency Risk Measures. Journal of Forecasting, 35(3), 224-249
-
Banulescu-Radu, D., Hurlin, C., Candelon, B., Laurent, S. (2016). Do we need high frequency data to forecast variances? Annals of Economics and Statistics (123/124), 135-174
-
Banulescu, G. D., Dumitrescu, E. I. (2015). Which are the SIFIs? A Component Expected Shortfall approach to systemic risk. Journal of Banking and Finance, 50, 575-588
Book chapters
-
Banulescu-Radu, D. (2022). L'intelligence artificielle, le machine learning et le deep learning: les défis de leur utilisation dans la détection de la fraude, in Cerveau(x) et droit - Neurodroit, algorithmes, intelligence artificielle, objets connectés, centres de décision, Lgdj
-
Banulescu-Radu, D., Ferrara, L., Marsilli, C. (2020). Prévoir la volatilité d'un actif financier à l'aide d'un modèle à mélange de fréquences, in Méthodes de prévision en finance, Economica
Working papers
​
-
Banulescu-Radu, D., Benoit, S., Hurlin, C., Evaluating the Social Security Contribution Fraud
-
Baesens, B., Banulescu-Radu, D., Hurlin, C., Kougblenou, Y., Verdonck, T., Benchmarking state-of-the-art resampling techniques for classification models
-
Banulescu-Radu, D., Dumitrescu, E., de Truchis, G., Long memory and power law coherency between realized volatility and trading volume
-
Banulescu-Radu,D., Bouchegnies, L., D., Giuliano, F., Artificial intelligence and banking-as-a-service: two challenges in the fight against financial crime
-
Banulescu-Radu, D., Hurlin, C., Kougblenou, Y., Machine Learning and cost sensitive learning for insurance fraud detection
​
Miscellaneous
​
-
​Banulescu-Radu, D. (2022). Data Science et Détection de Fraude en Assurance, in Lettre du LEO
-
Banulescu-Radu, D., Lacroix de Sousa, S. (2021). La lutte contre le blanchiment d’argent à l’ére du COVID-19, in Lettre du LEO
​
​​​
​
